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Summary The optimization of agricultural and industrial bio-
gas plants with respect to external influences and various process
disturbances is essential for efficient plant operation. The fact
that most biogas plants are manually operated because of
a lack of online-measurements and limited knowledge about
the anaerobic digestion process makes it necessary to develop
new optimization and control strategies. However, the opti-
mization and control of such plants is a challenging problem
due to the underlying highly nonlinear and complex digestion
processes. One approach to address this challenge is to exploit
the flexibility and power of computational intelligence (CI)
methods such as Genetic Algorithms (GAs) and Particle Swarm
Optimization (PSO). The use of CI methods in conjunction with
a validated plant simulation model, based on the Anaerobic
Digestion Model No. 1, allows optimization of the substrate
feed mix, a key factor in stable and efficient biogas production.
Results show that an improvement of up to 20% in biogas pro-
duction and substrate reduction can be achieved when compared
to conventional manual operation. ��� Zusammenfas-
sung Die Optimierung landwirtschaftlicher und industrieller
Biogasanlagen kompensiert den Einfluss von internen und

externen Prozessstörungen und ermöglicht einen effizienten
Anlagenbetrieb. Die meisten Biogasanlagen werden heute noch
aufgrund von fehlender Online-Messtechnik und wegen be-
grenztem Fachwissen über den anaeroben Faulungsprozess
von Hand gefahren. Der Einsatz neuer Optimierungs- und
Regelungsstrategien eröffnet dem Betreiber wertvolle und er-
tragssteigernde Perspektiven. Allerdings ist die Optimierung
und Regelung solcher Anlagen wegen der hochgradig nicht-
linearen und komplexen Faulungsprozesse eine besondere
Herausforderung. Die Flexibilität und Intelligenz von Com-
putational Intelligence (CI) Methoden, wie z. B. Genetischen
Algorithmen (GA) und der Particle Swarm Optimization (PSO)
qualifizieren diese Verfahren zu geeigneten Lösungswerkzeu-
gen. Dies, in Verbindung mit einem validierten Anlagensimu-
lationsmodell, basierend auf dem Anaerobic Digestion Model
No. 1, erlaubt die Optimierung der Mischungsverhältnisse bei
der Substratzufuhr, welche einer der wichtigsten Schlüssel für
eine stabile und effiziente Biogasproduktion ist. Die Ergeb-
nisse zeigen, dass im Vergleich zur konventionellen manuellen
Fahrweise eine Verbesserung von bis zu 20% in Bezug auf Bio-
gasproduktion und Substrateinsparung erreicht werden kann.

Keywords Biogas plants, optimization, control, Computational Intelligence ��� Schlagwörter Biogasanlagen,
Optimierung, Regelung, Computational Intelligence Methoden

1 Introduction
In the past twenty years the rise in worldwide energy
production using the conversion of biomass materials
to methane in biogas plants has its origin in large-scale

government aid. Renewable energy laws guaranteeing lu-
crative electricity remuneration rates and funding for
biogas plant construction, support a growing biogas sec-
tor [1; 2].
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This new market for renewable energy from energy
crops and municipal organic waste is struggling in Ger-
many due to reducing governmental support and rising
prices for biomass, which is considered to be one of the
biggest problems. In addition to that, costs for trans-
portation and disposal of fully fermented biomass have
an additional negative impact on biogas plant operation.
Furthermore, the global economic downturn and fluctu-
ating prices for energy from fossil fuels, make it difficult
for biogas plants to remain competitive in the long run.
Efficient plant operation is therefore crucial to ensure
that biogas companies remain viable. The use of advanced
control and optimization systems for biogas plants offers
a suitable and cost-effective solution to increase bio-
gas production and guarantee stable process conditions.
However, detailed knowledge of anaerobic digestion pro-
cesses is a necessary prerequisite for implementing this
solution. Fortunately this is becoming increasingly attain-
able due to recent developments in online-measurement
and process monitoring systems.

The difficulties with biogas plant operation are primar-
ily due to the complexity of anaerobic digestion processes.
Physical, chemical and biological processes run simultan-
eously and are furthermore affected by external influences
such as local weather conditions, environmental changes
and changes in daily feed load. The combination of multi-
ple complex processes and their dependencies on external
influences make it difficult to develop an automated con-
trol and optimization strategy which is both reliable and
effective. Reliability is of particular importance for agri-
cultural biogas plants, where permanent attention and
supervision by an operator is not practical.

To develop such an optimal control strategy, it is crit-
ical to monitor anaerobic digestion processes as closely
and accurately as possible to enable estimation of pro-
cess states and to detect unstable process states in time
and if possible in advance. This facilitates the imple-
mentation of more effective control measures. Online
process monitoring is rare at most agricultural and even
some industrial biogas plants because of high acqui-
sition and maintenance costs and a lack of reliability
during in situ measurements as proven by Kujawski
et al. (2007) [3]. This necessitates the development of
new methods for designing and optimizing advanced
control strategies before testing them in practice. One
common approach is to use pilot- or lab-scale anaero-
bic digestion reactors which are equipped with extensive
laboratory and online-measurements to test new con-
trol and optimization strategies [4]. A second approach
is to use dynamic simulation models for anaerobic di-
gestion [5]. In addition to the associated cost, a major
disadvantage of using pilot-scale reactors to validate
control and optimisation strategies is that the dynamic
behaviour of small reactors does not always scale to
full-scale reactors due to the highly nonlinear nature
of these systems. Given these deficiencies this article fo-
cuses on the benefits of using full-scale plant simulation

models for the validation of control and optimization
systems.

This article introduces the use of Genetic Algorithms
and Particle Swarm Optimization to optimize biogas
plant operation using a dynamic simulation model for
anaerobic digestion, the Anaerobic Digestion Model
No. 1 (ADM1) [6]. In particular, the substrate feed
(total amount and mixture) is optimized, taking into
account constraints such as amount of total solids and
digester load. The flexibility of these computational in-
telligence (CI) methods makes them perfectly suited to
the non-convex multi-objective nature of the optimisa-
tion problems posed by these complex systems.

Section 2 gives a short review of the current state
of the biogas market in Germany while Sect. 3 de-
scribes the functionality of biogas plants and the main
anaerobic digestion processes involved, as well as the
commonly used control and optimization strategies.
Newly developed sensor technologies that can provide the
online-measurement needed for optimization and con-
trol, are introduced in Sect. 4. The full-scale simulation
model of the biogas plant and the CI methods employed
to optimise biogas plant parameters are then introduced
in Sects. 5 and 6, respectively. Furthermore, Sect. 6 sum-
marises the results achieved for a biogas plant substrate
feed optimisation case study and gives a final evaluation
of the optimization strategies considered. Finally, future
opportunities in biogas plant operation and control are
highlighted.

2 Situation in Germany
The biogas market in Germany was booming in the last
decade due to the Renewable Energy Sources Act from
1999 and the amended version from 2004 as can be seen
in Fig. 1.

In spite of the steadily increasing number of biogas
plants, it becomes more and more difficult to assure
sustained efficient plant operation. Rising prices for avail-
able biomass which are caused by an increasing demand

Figure 1 Development of the number of biogas plants and the overall
installed electric power in Germany [7].
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Figure 2 Comparison of the degree of capacity utilization of 70 biogas
plants [8].

force operating companies to improve process efficiency
in terms of higher biogas production and quality. In
addition, increasing costs for energy, construction, main-
tenance and process monitoring of biogas plants on the
one hand, and steadily reducing remuneration rates on
the other hand, put pressure on an already struggling
market.

The positive effects the Renewable Energy Sources Act
has had so far on the biogas market are not going to last
indefinitely. Even the new amended version, coming in
2009, will not be able to stop obvious consolidation in
the biogas sector. However, the promotion of smaller so-
called “farmyard biogas plants” and higher remuneration
rates for efficient waste heat recovery at biogas plants
starting from January 2009 support new ideas and devel-
opments.

Figure 3 General layout of a Biogas plant.

Taking into consideration current developments in the
biogas sector, intelligent, efficient control and optimiza-
tion systems are needed more than ever to improve plant
operation and thus plant efficiency. Figure 2 clearly indi-
cates that larger biogas plants (with an energy production
above 300 kW), in particular, suffer from inefficient plant
operation. More than 30% of the plants true potential re-
mains unused. The reasons are obvious. The bigger the
size of the biogas plant, the more substrate is needed to
achieve efficient operation, which often is not available
or expensive due to high costs for transport and logis-
tics. In particular, the return transport of fully-fermented
biomass is time-consuming and expensive. Further, the
disposal of fully-degraded biomass from bigger biogas
plants requires an appropriate area of cultivation, whose
availability is limited. Moreover, physico-chemical pro-
cesses behave in a completely different fashion in small
fermentation tanks compared to large tanks, due to dif-
ferences in sedimentation and the circulation of currents
in the tanks.

3 Biogas Plant Operating Principles
Biogas plants are designed to produce methane (CH4)
and carbon dioxide (CO2) from organic material in the
absence of oxygen. This conversion is called anaerobic di-
gestion and its end-product is biogas. While there are big
differences between the scale and operation of industrial
and agricultural biogas plants, the basic plant design and
components are essentially the same in most cases. Each
biogas plant consists of one or several storage tanks for
organic material, a fermentation tank and a final storage
tank for fully digested sludge as shown in Fig. 3.
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The fermentation tank has two phases, a gas and
a liquid phase where organic material is digested by
anaerobic bacteria in a relatively complex bio-chemical
process. There are four processes involved in biogas pro-
duction [9].
1. Hydrolysis breaks complex organic structures open to

make them accessible to the following processes.
2. Acidogenesis produces organic acids as well as hydro-

gen, carbon dioxide, different alcohols and a small
amount of acetic acid out of organic material.

3. Acetogenesis uses organic acids, hydrogen and carbon
dioxide to produce acetic acid.

4. Methanogenesis produces methane from acetic acid
and to a lesser extent from hydrogen and carbon diox-
ide.

All processes involved in anaerobic digestion make differ-
ent demands on pH-value and concentration of organic
acids and they further rely on the full functionality of the
other processes. This sensitive balance between the sim-
ultaneously running fermentation processes is difficult to
maintain.

In practice, as illustrated in Figs. 4 and 5, variations in
the throughput of substrate and concentration of organic
total solids (oTS) in the substrate are the main factors
that influence process stability and biogas production in
agricultural biogas plants. The efficient optimization and
control of these plants can therefore be realized by adapt-
ing the substrate feed according to the state of anaerobic
digestion. Currently, mainly two main strategies for bio-
gas plant operation are used [10]:

Low substrate feed. The total amount of substrate fed
to a biogas plant is reduced to assure enough buffer
capacity against disturbances in the fermentation tank.
Hence, biogas production and plant efficiency decrease.

High substrate feed. The total amount of substrate fed
to a biogas plant is increased to achieve maximum biogas
production and plant efficiency. A sophisticated control
system with expensive online measurement systems is
crucial to maintain process stability.

Figure 4 Development of biogas production against total substrate feed
from 2004 to 2007 of a full-scale biogas plant.

Figure 5 Development of biogas production against concentration of
organic total solids from 2004 to 2007 of a full-scale biogas plant.

Agricultural biogas plants, in particular, are generally
operated at low substrate feeds, as advanced control and
measurement systems are not feasible. However, the ad-
vent of new cheaper online-measurement technologies
coupled with the recent development of dynamic biogas
simulation models, makes agricultural biogas plant opti-
mization and control possible.

3.1 Common Control and Optimization Strategies
Better control and optimization of the anaerobic diges-
tion process is one of the most effective ways of improving
the efficiency of biogas power plants, but other ap-
proaches can also be used to improve plant operation.
These include control of the cogeneration units with re-
spect to variations in biogas amount and quality and the
optimization of stirring intervals for the agitators inside
the fermentation tank to maximise biogas production.

Stirring of the contents of the fermentation tank is
very important, because it improves the contact between
anaerobic bacteria and available substrate. Moreover, stir-
ring on a regular basis helps to reduce sedimentation
and improves homogeneity inside the fermentation tank.
Nevertheless continuous strong stirring can also have
a negative affect on the speed of anaerobic digestion as
increasing shearing forces aggravate the contact between
bacteria and substrate. The relationship between stirring
and anaerobic digestion processes has been studied in
various research projects; see for example [11; 12].

Another way to monitor and improve plant opera-
tion is to perform laboratory analysis of the fermentation
sludge and substrate feed on a regular basis. Organic
acids, ammonium and heavy metal concentrations are the
most important parameters that need to be examined.
Knowledge of these parameters allows efficient process
operating conditions to be determined. However, per-
forming the analysis and interpreting the results requires
detailed knowledge about the fermentation process, and
access to such expertise is generally only cost effective for
the largest biogas production facilities.
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Furthermore, while the high level of detail obtained by
a laboratory analysis allows a very precise assessment of
the state of the process, the analysis of samples generally
takes a few days, so that the information is not available
in a timely fashion. Clearly this is not satisfactory for the
detection of critical process states requiring immediate
attention.

These basic control and optimization strategies using
PI or PID controllers for temperature and combustion
control as well as regularly laboratory analysis, have
proven to be efficient and have made a significant contri-
bution to improved biogas plant operation. Nevertheless,
new technologies and optimization strategies that take
into account new online-measurements, offer new possi-
bilities for faster and more efficient reactions to varying
process states. Some developments in this area have al-
ready been demonstrated in lab-scale applications and
simulation case-studies by Genovesi [13] and Alferes [14].

4 Online-Measurements
The strong progress and decreasing costs in the Au-
tomation and IT sector make it possible to broaden the
application of online measurement equipment on bio-
gas plants. This is of considerable benefit to operators, as
the provision of up-to-date information on process states
allows them to make better decisions based on more in-
formation, and hence increases the likelihood that plants
are operated efficiently.

In addition, available measurement data can be used
to develop computer based simulation and optimization
models which allow a further increase in productivity
with minimum effort for the operator. In the following
sections the most common and most interesting param-
eters that are currently measured on biogas plants are
described. Additionally, some interesting and promis-
ing new measurement techniques that are currently the
subject of research for the biogas sector are introduced
briefly.

4.1 Common Online-Measurements
Every biogas plant has a certain number of online-
measurement devices that are used to monitor the most
critical process parameters. However, the number and
quality of the equipment used depend on planned in-
vestment volume and regular maintenance.

Table 1 gives a short survey of the most common
online-measurements that can be found at most biogas
plants.

Monitoring of the fermentation temperature is crucial
as methane forming bacteria only survive in relatively
narrow temperature bands. Thus, it is necessary to have
a reliable value of this parameter at all time. This also
applies for redoxpotential, which is used to monitor the
anaerobic environment necessary for biogas production
(around –500 mV). Very small amounts of oxygen di-
rectly result in an increase in redoxpotential.

Table 1 Common online-measurements at biogas plants.

Online-measurement Application

Temperature Monitoring of fermentation temperature

Redoxpotential Monitoring of anaerobic environment

Gas flow Analysis of gas amount produced

Gas analysis
CH4, CO2, O2, H2S

Monitoring of gas quality, gas composition

To effectively control cogeneration units input bio-
gas flow and composition have to be monitored closely.
The biogas composition, in particular, is very important.
The concentration of CH4 in biogas has to be above
50% most of the time to guarantee continuous efficient
operation of cogeneration units. Furthermore, high con-
centrations of H2S in the biogas can inhibit anaerobic
digestion processes as well as cause severe emission- and
corrosion-problems in cogeneration units. However, no
precise limit values can be specified for H2S concentra-
tions, because the inhibition depends on the adaptation
of the process to H2S.

4.2 Innovative Online-Measurements
Anaerobic digestion processes are still considered as black
boxes [15]. Many important process parameters can only
be measured using complex and expensive laboratory
equipment. Nevertheless, online-measurement sensors
have recently come on the market that can indirectly
measure parameters such as organic acids and the amount
of total solids. These new sensors are very promising but
still need to be validated in long-term operation. In par-
ticular, the calibration of these sensors is very complicated
and requires expert knowledge.

The measurement of total and organic solids is used to
determine the quality of the substrate feed, its potential
for biogas production and, if measured inside the fermen-
tation tank, digester load. The more digestible biomass
a substrate contains, the higher the amount of organic
solids. In agricultural biogas plants that primarily use
renewable energy crops, there is only a small difference
between total solids and organic solids. With total and
organic solids it is common, to use a drying closet to
evaporate water in a sample. By weighing before and after
drying, the percentage of dry material can be measured.
To get the amount of organic solids, the dried sample is
then put into a muffle furnace where all the organic ma-
terial is burned up. Again by comparing the weight before
and after, the amount of organic solids can be deduced.
However, this method has two main disadvantages: (i)
the process is very time consuming, as the drying and
burning take more than 24 hours for one sample, and;
(ii) the energy consumption during these processes is
enormous.

New online-measurement probes can be used to meas-
ure these parameters directly in the process instead of
taking samples. For total solids, there are already systems
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available for field use. For example, Fig. 6 shows an ultra-
sound measurement unit that is increasingly being used
in modern biogas plants. This can measure the amount
of solids in a substrate as it is pumped through the feed
line.

The online measurement of organic solids is more
complicated. One promising method in this context is
the use of NIRS (near infra-red spectroscopy, Fig. 7). The
measurement equipment basically consists of a NIR-light
source and a detector. The light source generates pulses
of NIR-light which are used to illuminate the sample
material. The detector then measures the reflected light
spectrum (800–1600 nm) and compares it to the source
spectrum.

In this way the concentration of various substances
can be indirectly measured as different substances ab-
sorb light at different wavelengths. The downside is, that

Figure 6 Ultrasound TS Probe by hf-sensor [16].

Figure 7 NIR-measurement system [17].

Figure 8 UV/vis-spectroscopy probe.

the system has to be calibrated specifically for every sin-
gle substance that has to be measured, an exercise that
must be repeated regularly as values drift significantly
over time. NIR-spectroscopy also allows the measure-
ment of other useful properties such as pH-Value as well
as concentrations of organic acids like acetic acid and
propionate acid. Nevertheless, this wide range of applica-
tion at biogas plants has its price. One NIR-probe costs
between 30 and 40 thousand Euro, depending on the con-
figuration.

A similar approach to NIR-spectroscopy is UV/vis
spectroscopy, which measures the absorption of ultravi-
olet light (200–750 nm) to determine the concentration
of a certain substance in a liquid sample.

The technology comes from the wastewater treatment
sector where it has been successfully used for several years.
The main problem for the application on biogas plants
is the high concentration of the different substances in
the substrate and also the relatively high concentration of
solids. In a pilot project researchers at the Cologne Uni-
versity of Applied Sciences have developed an automated
sample preparation and dilution system that addresses
these issues and installed it on an industrial biogas plant.
Initial results are very promising [18].

These new technologies and their possible applications
make it obvious, that the basis for the development of
new control and optimization strategies is growing. On-
line process monitoring at biogas plants is possible and
becoming more and more affordable.

5 Simulation Model
Biogas plant simulation models are valuable as tools for
learning about and understanding the complex behaviour
of anaerobic digestion processes and also as platforms
for developing and testing new optimization and control
strategies. To be of value for the latter, models have to
adequately capture the different fermentation phases and
inhibition factors as well as the fermentation process de-
pendencies on internal and external influences that are
responsible for non-linear plant behaviour. The ADM1
model, developed by the IWA (International Water As-
sociation) for anaerobic digestion, offers these features
through its detailed representation of the various bio-
chemical mechanisms involved.

In a recent work a biogas plant simulation was
developed in Matlab using the ADM1 model implemen-
tation that comes with the Simba® toolbox. Simba®
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is a Matlab software package for dynamic simulation
of biological wastewater systems [19]. The simulation
was designed to replicate the behaviour of a reference
agricultural biogas plant near Frankfurt (Germany). The
substrate feed of the reference plant consists of Cob Corn
Mix (CCM), Rye and pig manure. Using basic online-
measurements, the simulation model was calibrated to
match biogas production and quality for different sub-
strate combinations.

The complete simulation model implemented in Mat-
lab consists of five elements: (1) substrate feed; (2)
fermentation tank (ADM1 model); (3) final storage tank;
(4) energy balance; (5) biogas analyses. All simulations
were performed under the following conditions for the
anaerobic digestion process:
• Fermentation occurs under mesophilic conditions

(40 ◦C)
• The fermentation tank is ideally stirred
• The fermentation tank has a liquid phase of 1000 m3

and a gas phase of 350 m3

The calibrated simulation model allows the prediction
of methane production as a function of the substrate
feed composition. Figure 9 shows a model prediction in
which the substrate feed can be increased up to a certain
level until methane production collapses. Different sub-
strates will increase or even decrease methane production,
depending on their ingredients. The simulated methane
production levels plotted in Fig. 9 match the behaviour
of the full-scale reference biogas plant.

The breakdown of methane production can be at-
tributed to many factors but the most common are:
• Critical concentration of organic acids
• High ammonia concentration
• High hydrogen sulfide concentration
• Critical concentration of heavy metals
Critical process states caused by acid and ammonia in-
hibition are captured by the simulation model, whereas
inhibition resulting from sulfate reduction, the develop-
ment of hydrosulfide and critical concentrations of heavy

Figure 9 Simulated methane production for varying substrate feeds.

metals cannot be simulated. This is a limitation of the
ADM1 model implementation employed. However, if
needed, ADM1 can be expanded to include sulfate re-
duction as proposed by Fedorovich and Kalyuzhnyi in
2003 [20], but this has not been used for optimization
purposes to date.

The availability of a validated simulation model al-
lows powerful Computational Intelligence (CI) methods
such as Particle Swarm Optimization (PSO) and Genetic
Algorithms (GA) to be used to estimate optimum oper-
ating parameters for the biogas plant. The application of
these powerful population based optimisation procedures
is only feasible with a simulation model because testing
many different operating parameters at full-scale biogas
plants is difficult and often not practical. For example,
varying substrate feed parameters can affect process sta-
bility and cause extreme situations that are difficult to
recover from.

Section 6 provides a brief overview of GAs and PSO
and demonstrates the potential of this approach for the
problem of estimating the optimum substrate feed com-
bination for a biogas plant.

6 Optimization Using PSO and GAs
The optimization of the substrate feed with regard to
its flow rate (throughput) and composition is a highly
non-linear and complex optimization problem which
cannot easily be tackled using conventional optimisa-
tion techniques. CI methods such as Genetic Algorithms
(GAs) and Particle Swarm Optimization (PSO), how-
ever, are perfectly suited to this task. GAs and PSO
are both methods, designed to search among a collec-
tion of possible solutions for a designated solution. The
most distinguishing characteristic of these CI methods,
compared to analytic optimization methods, is that they
have been developed to emulate natural highly non-linear
phenomenons. In this case of GAs the inspiring natural
example is genetic evolution while in the case of PSO it is
the emergent complex patterns observed in the collective

Figure 10 Methane production solution points generated by PSO.
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movement of many species (e. g. bird flocking, animal
herding and fish schooling).

A major strength of these methods is their global
search capability. This allows a large search space to be
explored and can lead to novel solutions that would nor-
mally not be considered. The global search capability of
GAs and PSO in seeking a good solution to a complex
problem is illustrated in Fig. 10. This shows the methane
production resulting from various solutions generated by
the PSO during 400 generations and highlights that both
very low and very high substrate feeds are evaluated in
an extremely non-linear state space. [21]

6.1 Introduction to Genetic Algorithms
GAs are described using biological terminology which
differentiates them from other evolutionary computation
methods. The most important terms are as follows:
• Chromosome: A representation of a possible solution

to an optimization problem where parameter values
are encoded using either binary, real-valued or tree
encoding.

• Genes: Groups of bits or real values which encode
one particular element of a possible solution (chro-
mosome).

• Crossover: An operation in which genetic material is
exchanged between two different chromosomes (par-
ents) to generate new chromosomes (children).

• Mutation: An operation which randomly changes parts
of a gene in a chromosome at randomly chosen places.

• Population: The set of chromosomes used to explore
the optimization space. This can either be fixed or vary
as optimization progresses.

• Generation: One optimization cycle of a GA.
As described in Mitchell [22] a basic genetic algorithm
works as follows:
1. Generate a random initial population of n chromo-

somes.
2. Calculate the fitness f (c) of each chromosome c in the

population.
3. The following steps are repeated to obtain a new pop-

ulation with n offspring:
a) Select two parent chromosomes based on the cal-

culated fitnesses.
b) Crossover the parents at a chosen point with

a crossover probability pc and create two offspring.
c) Mutate the offspring at every position with

mutation probability pm and add the mutated chro-
mosomes to the new population.

4. Exchange the current population with the newly gen-
erated population.

5. Repeat from step 2.
A single iteration of these steps represents one generation
of the GA.

The most critical parameter in a GA is the fitness
function which is used to evaluate potential solutions. If
the fitness function is poorly chosen optimization results
will also be poor. Finding the appropriate fitness func-

Table 2 Parameters for the GA.

GA parameters Value

Number of generations 200

Population size 60

Probability of crossover 0.7

Crossover strategy Intermediate

Mutation strategy Adaptive feasible

Selection strategy Elitism + Stochastic uniform

tion for a complex optimization problem is often the
most difficult task. Furthermore, algorithm performance
is sensitive to the choice of generation and population
size, crossover and mutation functions and chromosome
encoding; hence these parameters must also be carefully
chosen for optimum results.

Genetic Algorithm Design
Design parameters such as population, number of gen-
erations, crossover function and mutation rate require
careful selection in order to obtain good optimization
results. Table 2 shows the parameters used in the GA for
substrate optimisation. The GA has been created using
the standard Matlab GA toolbox [23].

The crossover strategy Intermediate creates children as
a weighted average of the parent solutions according to
the following equations,

C1 = P1 + r (P2 – P1)

C2 = P2 + r (P1 – P2)
(1)

where C1 and C2 are children of parent solutions P1 and
P2, r is a uniform random crossover factor in the range
[0, 1]. The mutation strategy adaptive feasible randomly
generates mutations which are adapted based on previ-
ous successful and unsuccessful generations in order to
remain feasible.

6.2 Introduction to Particle Swarm Optimization
PSO is a population-based evolutionary computation
algorithm for problem solving which simulates social
behaviour in swarms. In determining how to move, indi-
viduals in a swarm (particles) exchange information with
their neighbours, thereby influencing their behaviour and
eventually the movement of the whole swarm. This pro-
cess allows a swarm to move towards the most interesting
site in a search space, as information about interesting
sites is slowly propagated to the whole swarm. Thus, in
PSO, the behaviour of each particle in a swarm is gov-
erned by two basic principles: particle communication and
particle movement.

Particle communication is controlled by the parame-
ter KN , defined as the number of neighbouring particles
a particle is exchanging information with. To guarantee
sufficient particle communication KN has to be carefully
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selected. If it is too small the propagation of important
information to all particles might take too long and if
too large, particles might get stuck in a local optimum.
The probability Pr(t) for a particle to be reached at least
once after the tth run is described by the following for-
mula [24], where N is the number of particles and KN is
the number of neighbours for information exchange.

Pr(t)= 1 –

(
1 –

1

N

)Kt
N

(2)

As the probability increases quickly with t, even with
a small number of neighbours, KN , information propa-
gation throughout the whole swarm can be rapid.

The movement of a PSO particle in a search space
is defined in terms of its position vector x(t) and three
parameter vectors:
• Velocity (v): The speed at which the particle moves

through the search space.
• Personal best position (p): The best position a particle

has currently found.
• Global best position (g): The best position found by

informants of a particle.
Using these parameters a particle’s position and velocity
are updated at the tth iteration as follows:

v(t + 1)= c1v(t) + c2(p(t) – x(t)) + c3(g(t) – x(t))

x(t + 1)= x(t) + v(t)
(3)

Weights c1 to c3 are constants that determine the impor-
tance of the different vectors:
• c1 represents the confidence of a particle in its direction

of movement.
• c2 and c3 represent the confidence of a particle in

its personal best position and its best reported global
position, respectively.

Using these mechanisms a swarm of particles moves
through a search space looking for an optimal solution
to a defined optimization problem. In a similar fashion
to GAs, at each iteration all particles are evaluated using
a fitness function and this information is used to update
the current position, personal best position and global
best position of each particle.

Particle Swarm Optimization Design
PSO was implemented using a free Matlab toolbox de-
veloped by Birge [25] with algorithm parameters set as

Table 3 Parameters for the PSO.

PSO parameters Value

Number of runs 400

Number of particles 30

Personal best influence 2

Global best influence 2

Initial inertia weight 0.9

Final inertia weight 0.6

shown in Table 3. The values for personal and global best
influence represent how much confidence a particle has
in its personal best position and in the best position it has
ever heard of, while the initial and final inertia weights
reflect how much confidence a particle has in its own
current position.

6.3 Fitness Function
The main challenge using GAs and PSO is to properly
evaluate generated solutions and to rank them. This eval-
uation is done by a so called fitness function. As the
fitness of a generated solution decides whether it will be
considered or deleted, fitness function design is crucial
to successful optimization. For some processes the fitness
function is obvious, but for anaerobic digestion processes
more than one parameter is important for the evaluation
of possible substrate feeds. The key performance param-
eters of the fitness function are how far a substrate has
been digested (Ds), energy consumption for pumps and
heating of a fermentation tank (E), gas quality (Gq) and
quantity (Ga), digester load (Ld) and penalties for exceed-
ing pH (PpH), substrate (Ps), or total solids (PTS) limits.
A weighted sum of these parameters, where each is scaled
and multiplied with constant factors c1 to c8, constitutes
the fitness function f considered here. The optimization
objective is to minimize the fitness function.

f =

{
c1Ds + c2E + c3Gq + c4Ga +

c5Ld + c6PpH + c7Ps + c8PTS

(4)

The weights for parameters Ga and Ld are selected to
be greater than the others, because the first priority
of substrate feed optimization is to tap the full poten-
tial of a biogas plant by maximizing biogas production
and digester load in order to obtain maximum plant
profitability. Therewith, other parameters like Energy
consumption are of secondary importance.

6.4 Results and Discussion
Optimizing the substrate feed of biogas plants is the best
way to directly influence biogas production and to react
adequately to changing process states. This is achieved
by varying the quantity and composition of the different
substrates used for anaerobic digestion. In the case study
considered here the substrate feed to be optimised con-
sists of three substrates, Cob Corn Mix (CCM), Rye and
pig manure.

To allow direct comparison between GAs and PSO the
same fitness function is employed with both optimization
strategies, In addition, both methods were executed for
the same total number of simulation runs (12 000).

Figure 11 provides a comparison between the manually
determined standard substrate feed and the optimised
substrate feed determined by both GAs and PSO. The
objective was to minimize the fitness function which re-
sulted in a minimum substrate feed. The bar chart shows
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Figure 11 Comparison of standard and optimized substrate feed for an
energy production of 300 kW.

the composition of substrate in each case and the quantity
of substrate needed to achieve a power output of 300 kW.

The results show that there is great potential for im-
proving biogas plant operation if the substrate feed is
optimized. Figure 11 shows that the overall substrate feed
can be reduced by 21% while achieving the same en-
ergy production, no matter, which optimization strategy
is used. Furthermore, energy consumption for heating
the fermentation tank and pumping substrate is reduced
whereas the retention time of the substrate in the fer-
mentation tank is prolonged, resulting in better substrate
degradation.

While the final results of the optimization strategies
are very similar, it is important to consider other factors,
namely the computation time and the inter-run vari-
ability in results arising from the stochastic nature of
the methods. The fact that many simulations have to be
performed and their outcomes evaluated makes compu-
tation time one of the critical factors for the application

Figure 12 Improvement in the best fitness as a function of the number
of fitness function evaluations for (a) GAs; and (b) PSO (average and
standard deviations shown are based on 10 optimization runs).

of these methods. To evaluate the variability in results
and the performance versus computation time trade-off
the evolutions of the GA and PSO fitness function over
10 optimization runs was analysed and their average and
standard deviations plotted in Fig. 12.

As can be seen GA and PSO achieve comparable re-
sults with the average final fitness of the PSO composition
marginally superior to the GA (1.549 compared to 1.550).
In addition, the variability of results obtained with PSO
is much less than obtained with GAs (40%), hence PSO
has a much greater likelihood of generating good opti-
mization results in a given run.

When comparing the computational performance of
PSO and GAs it has to be considered that each method
requires a different number of fitness function evalu-
ations per generation and takes a different number of
generations to converge. For example the best GA result
required 196 generations with 60 simulations for each
generation to reach the best fitness, whereas the best PSO
run needed 337 iterations with 30 simulations each. This
resulted in a total of 11 760 biogas-plant simulations for
the GA and 10110 simulations for PSO, which clearly
highlights that PSO is approximately 14% faster than the
GA in this instance. Compared to the gain in final fit-
ness this saving in simulations is more important (each
simulation takes approximately 10 seconds on a 2.4 GHz
Quad-Core Pentium Processor). Thus PSO is the pre-
ferred optimization strategy for this application. It further
should be highlighted that both methods practically cal-
culate the same result, although they are of probalisitic
i. e. non-deterministic nature, and use totally different
algorithms. This empirically proofs the reliability and sta-
bility of these methods, for which an analytical stability
proof is not possible.

To sum up, the availability of a calibrated simulation
model offers important advantages for biogas plant con-
trol and optimization. It allows the simulation and eval-
uation of hundreds of substrate combinations so that op-
timal feed parameters can be determined for specific sit-
uations under specified conditions. In addition, substrate
feed optimization results can be evaluated against exist-
ing feed strategies with respect to important performance
criteria such as biogas quantity, quality and pH-value,
as well as substrate and energy costs. It also allows plant
operators to classify the substrate mixes they currently use
as well as predict, in advance, the consequences for biogas
production of previously unseen operating conditions.

Optimization results show that an intelligent opti-
mization strategy involving GA or PSO model-based
optimization of substrate feed, can substantially improve
the efficiency of biogas plants without compromising pro-
cess stability. In particular, the reduction of substrate feed
of 21% is very high, but this may differ from plant to plant
as it very much depends on the optimization potential of
individual biogas plants. The direct comparison of a GA
and PSO applied to the same application revealed inter-
esting results, showing that both methods reach similar
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fitness values, but computation time to reach an optimum
is significantly different. PSO has proven to be more effi-
cient than GAs with the result that similar results to GAs
can be achieved a lot faster using PSO.

7 Conclusions
The current state of the biogas market shows a steadily
growing need for new developments in the areas measure-
ment, control and optimization. All these areas are still in
their infancy, when it comes to full-scale applications and
the necessary investment costs are very high. Changing
market conditions means that improving plant efficiency
is becoming more and more important to the long term
viability of operating companies. Consequently there is
increasing demand for biogas plant manufacturers to
offer control and optimization systems that can deliver
improved efficiency. This system approach relies on the
availability of robust on online-measurement systems.

Furthermore, many biogas plants in Germany and all
over Europe that have been running for a few years
experience problems due to long-term effects such as
sedimentation and the need to change substrates. The in-
stallation of appropriate online-measurement equipment
and easy-to-handle optimization systems to address these
problems presents an enormous market opportunity that
has yet to be exploited.

These two developments offer great opportunities for
the intelligent use of advanced automation systems in the
future. The use of validated simulation models and CI-
methods is merely the first step.
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